

Cemented Total Hip Replacement Surgical technique

Corin

TaperFit[™]

Contents

Taperfit product overview	4
Operative technique	6
Pre-operative templating	6
Surgical exposure	6
Femoral neck resection	6
Acetabular preparation	6
Cenator cup acetabular preparation	7
Reaming the acetabulum	7
Insertion of the acetabular cup	7
Femoral preparation	8
Opening the femur	8
Reaming the medullary canal	8
Rasping the medullary canal	8
Trial using rasp	8
Trial using trial stem	9
Insertion of definitive femoral implant	9
Ordering information	10

TaperFit™ Design I History I Function

Cemented total hip replacement

TaperFit

Product overview

TaperFit is a double-tapered, polished, collarless stem, based on biomechanical principles proven over 20 years of clinical use¹.

The design takes advantage of the 'cement creep' phenomenon. The implant is decoupled from the cement and becomes progressively more stable and secure, wedging within the cement mantle as the stem subsides. Thus the cement-bone interface is protected.

One of the most important factors in successful total hip replacement is ensuring the central placement of the stem within the cement mantle. Misalignment of the prosthesis in the cement mantle has been shown to correlate with early loosening and failure of the prosthesis².

The TaperFit femoral prosthesis has been designed with an extended lateral shoulder and superior location recesses, which accommodate the smooth bollards of the dedicated introducer. This introducer allows force to be applied directly down the axis of the stem during insertion, giving precise rotational control.

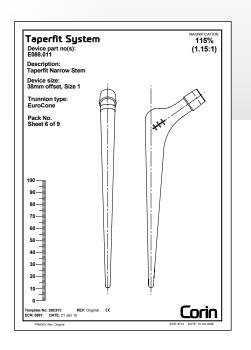
The lateral shoulder of the TaperFit stem is specifically designed to improve rotational stability and increase proximal fill. The square shoulder is also designed to enhance the cement pressurisation in the trochanteric

region of the upper femur. The broad proximal section is double-tapered to a slim distal tip. This design enables two offsets to be achieved within a given range of stem sizes. The sizing of the TaperFit implant is designed to match differing patient anatomies with a concise product range.

The risk of metallic abrasion at the cement interface (which can result from micromotion) has been drastically reduced³, as the TaperFit stem has a highly polished surface. Implant stability is greatly enhanced by the effect of the double taper which permits controlled distal migration. The forces in the proximal femur are therefore at equilibrium, transmitting the physiological loads through radial pressurisation. The stem centraliser is manufactured from polymethyl-methacrylate (PMMA). This device centralises the distal tip of the stem and re-polymerises with the cement mantle during insertion.

The TaperFit stem is manufactured from high strength, high nitrogen stainless steel and is available in four sizes with two offset configurations: 38mm and 45mm. There is also a CDH stem available with 36mm offset. Each implant has a dedicated over-sized broach which produces an optimum cement mantle. A trial reduction can be performed with the broach *in situ*. Implant depth may be accurately measured by assessing the position of one of three holes in relation to the resected femoral neck. Corresponding marks on the stem ensure the position is accurately replicated once the definitive femoral component is introduced.

The TaperFit modular trunnion is compatible with a comprehensive range of Corin modular heads in cobalt chrome and BIOLOX *delta* ceramic.


Fracture management solutions are available with the use of Bipolar and/or hemiarthroplasty heads.

TaperFit also offers compatibility with a wide range of acetabular options, including Cormet cup, Trinity advanced acetabular bearing system and Cenator cemented polyethylene cup.

TaperFit

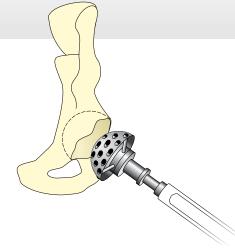
Operative technique

Pre-operative templating

Pre-operative templating using the Corin X-ray templates provided allow the surgeon to identify the implant sizes appropriate for the patient, and also to plan the position in which the components will be placed. Whilst templating, allowance must be made for a complete cement mantle for the chosen component.

Surgical exposure

Full exposure of both the acetabulum and proximal femur are required to permit effective preparation and implantation.


Femoral neck resection

The osteotomy line for neck resection usually runs from the superior surface of the base of the neck to a point midway between the upper margin of the lesser trochanter and the inferior aspect of the head. However, since the TaperFit stem is a collarless device, the level and orientation of neck resection is not critical to this procedure.

Acetabular preparation

The acetabulum is prepared as instructed for the chosen acetabular cup system. The TaperFit stem can be used in combination with the large diameter Optimom head and Cormet cup, the Trinity acetabular cup system or the Cenator cemented polyethylene cup – please refer to the respective surgical technique (see facing page for Cenator).

Cenator cup acetabular preparation

Step 1. Reaming the acetabulum

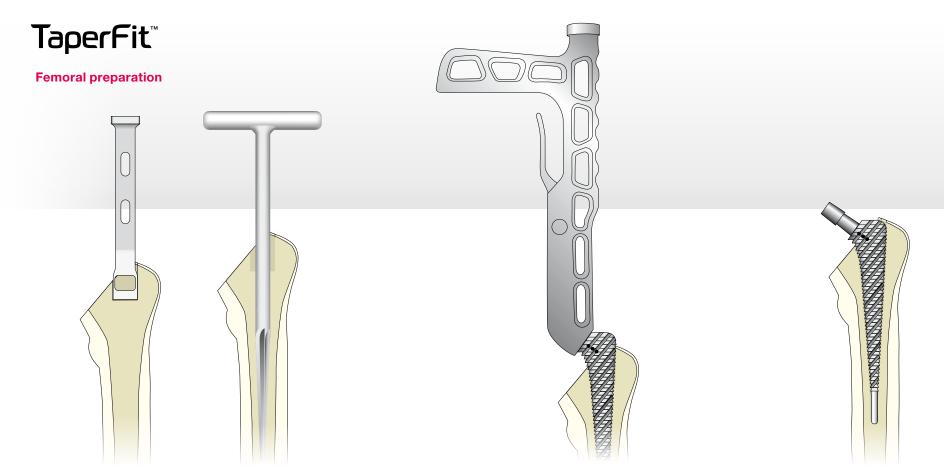
The acetabular rim is identified and any osteophytes and capsular remnants are removed.

The acetabulum is reamed up to the appropriate size, using sequentially larger reamers, until bleeding subchondral bone is exposed and the acetabulum is hemispherical.

In order to ensure an adequate cement mantle, the final size of reamer used should be 4mm larger than the cup to be implanted, e.g. to accept a 44mm cup the acetabulum must be reamed to 48mm.

Step 2. Insertion of the acetabular cup

Trial cups may be used to confirm the size selection made at pre-operative templating.


The acetabulum is then prepared to accept bone cement which is applied according to usual practice.

Flanged Cenator cups have a 0.75mm thick flange which is marked with concentric rings 2mm apart. The flange should be trimmed to the contours of the acetabulum prior to cementing in place.

The chosen acetabular component is then mounted on the acetabular cup holder and inserted into the bone cement. The cup holder permits orientation of the cup as follows: with the handle parallel to the long axis of the body, and the metal shaft at 90° to the long axis, the cup will be placed at 45° of abduction, in neutral, so anteversion may then be applied by appropriate rotation of the handle.

Pressure is applied to the back of the cup holder with the pusher and excess bone cement removed.

The cup introducer is removed by squeezing the 'trigger'. The plastic-headed cup pusher is inserted into the cup and firm pressure is maintained until the bone cement has fully polymerised.

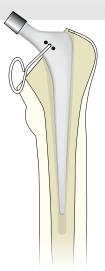
Step 3. Opening the femur

The proximal femur is opened using the box osteotome ensuring that this is positioned laterally into the greater trochanter and with the appropriate anteversion.

Step 4. Reaming the medullary canal

The medullary canal is identified and opened using the tapered reamer.

Step 5. Rasping the medullary canal


The medullary canal is then rasped sequentially starting with the smallest rasp, of appropriate offset, until the rasp equivalent to the prosthesis chosen at templating is seated within the femur.

The rasp handle may be impacted directly using a mallet, or the slap hammer may be used to both impact and loosen the rasp.

Step 6. Trial using rasp

Stability and fit are assessed, and if satisfactory, the rasp handle is removed. A trial neck is placed on the spigot, a standard trial modular head of appropriate diameter placed on the trial neck and a trial reduction carried out.

Long or short trial heads may be used if adjustment is necessary.

Step 7. Trial using trial stem

If the surgeon prefers to use a trial stem rather than the rasp, the rasp is removed and a trial stem matching the rasp is placed into the femoral canal. The pin is placed through the central hole on the trial stem, a standard trial modular head placed on the trunnion and a trial reduction carried out.

Long or short trial heads may be used if adjustment is necessary.

Step 8. Insertion of definitive femoral implant

The rasp is removed, using the rasp handle and slap hammer and the medullary canal prepared to accept bone cement according to the surgeon's preference.

A Corin Hardinge canal occluder or similar is inserted into the medullary canal to the correct depth, ensuring it is placed at least 2cms below where the distal tip of the implant will be. Bone cement is applied via a cement gun, in a retrograde fashion.

The definitive implant is mounted onto the stem introducer and the stem centraliser placed on the distal tip. The stem is then pushed firmly into the bone cement until it reaches the level at which the rasp or trial stem sat during the trial reduction (this may be checked by reference to the three marks on the implant).

W

Pressure is applied, excess bone cement is removed, and the stem introducer detached from the stem when the cement has fully polymerised.

A further trial reduction may be carried out using a trial head, or a definitive modular head (matching the trial head used) is secured in place onto the trunnion. The wound is then closed according to the surgeon's usual practice.

Ordering information

TaperFit femoral stems

Corin (11/13) options

-

	188.000	36mm Offset CDH
	188.001	45mm Offset size 1
	188.002	45mm Offset size 2
	188.003	45mm Offset size 3
	188.004	45mm Offset size 4
V	188.011	38mm Offset size 1
	188.012	38mm Offset size 2
	188.013	38mm Offset size 3
	188.014	38mm Offset size 4

Eurocone (12/14) options

	E088.000	36mm Offset CDH
	E088.001	45mm Offset size 1
	E088.002	45mm Offset size 2
	E088.003	45mm Offset size 3
	E088.004	45mm Offset size 4
1	E088.011	38mm Offset size 1
	E088.012	38mm Offset size 2
	E088.013	38mm Offset size 3
	E088.014	38mm Offset size 4

TaperFit femoral stems are manufactured from high-strength stainless steel, to BS7252-9/1993 ISO 5832-9:1992. This material is fully compatible with cobalt chrome modular heads, as detailed in EN12010, European Standard for non-active surgical implants joint replacement implants - Particular requirements, approved on 1 January 1998

CoCr modular heads for use with Cenator cup

CoCr modular heads, Corin (11/13) options

	116.022	22mm short
)	116.122	22mm medium
	116.222	22mm long
	116.026	26mm short
	116.126	26mm medium
	116.226	26mm long
	116.028	28mm short
	116.128	28mm medium
	116.228	28mm long

4

CoCr modular heads, Eurocone (12/14) options

22mm short E100.022 E100.122 22mm medium E100.222 22mm long E100.026 26mm short E100.126 26mm medium E100.226 26mm long E100.028 28mm short 28mm medium E100.128 E100.228 28mm long

CoCr and BIOLOX *delta* modular heads for use with the Trinity acetabular cup

CoCr modular heads Eurocone (12/14)

2	E321.028	Small	-3.5mm	28mm
	E321.032	Small	-4.0mm	32mm
	E321.036	Small	-4.0mm	36mm
	E321.040	Small	-4.0mm	40mm
	E321.128	Medium	-0.0mm	28mm
	E321.132	Medium	-0.0mm	32mm
	E321.136	Medium	-0.0mm	36mm
	E321.140	Medium	-0.0mm	40mm
	E321.228	Long	+3.5mm	28mm
	E321.232	Long	+4.0mm	32mm
	E321.236	Long	+4.0mm	36mm
	E321.240	Long	+4.0mm	40mm
	E321.332	Extra long	+7.0mm	32mm
	E321.336	Extra long	+8.0mm	36mm
	E321.240	Extra long	+8.0mm	40mm

BIOLOX delta ceramic modular heads Eurocone (12/14)

	104.2800	Small	-3.5mm	28mm
100	104.3200	Small	-4.0mm	32mm
	104.3600	Small	-4.0mm	36mm
	104.4000	Small	-4.0mm	40mm
	104.2805	Medium	-0.0mm	28mm
	104.3205	Medium	-0.0mm	32mm
	104.3605	Medium	-0.0mm	36mm
	104.4005	Medium	-0.0mm	40mm
	104.2810	Long	+3.5mm	28mm
	104.3210	Long	+4.0mm	32mm
	104.3610	Long	+4.0mm	36mm
	104.4010	Long	+4.0mm	40mm
	104.3215	Extra long	g +7.0mm	32mm
	104.3615	Extra long	g +8.0mm	36mm
	104.4015	Extra long	g +8.0mm	40mm

Cenator cemented polyethylene acetabular cups

Standard cups with EPW

-	

175.140	40mm OD 22mm ID
175.144	44mm OD 22mm ID
175.148	48mm OD 22mm ID
175.152	52mm OD 22mm ID
175.344	44mm OD 28mm ID
175.348	48mm OD 28mm ID

Flanged cups with EPW

175.640
175.644
175.648
175.652
175.740
175.744
175.748
175.752

175.640	40mm OD 22mm ID
175.644	44mm OD 22mm ID
175.648	48mm OD 22mm ID
175.652	52mm OD 22mm ID
175.740	40mm OD 26mm ID
175.744	44mm OD 26mm ID
175.748	48mm OD 26mm ID
175.752	52mm OD 26mm ID
175.844	44mm OD 28mm ID
175.848	48mm OD 28mm ID
175.852	52mm OD 28mm ID

Standard cups without EPW

	176.140	40mm OD 22mm ID
	176.144	44mm OD 22mm ID
3	176.148	48mm OD 22mm ID
	176.152	52mm OD 22mm ID
	176.344	44mm OD 28mm ID
	176.348	48mm OD 28mm ID
	176.352	52mm OD 28 mm ID

Flanged cups without EPW

176.640	40mm OD 22mm ID
176.644	44mm OD 22mm ID
176.648	48mm OD 22mm ID
176.652	52mm OD 22mm ID
176.740	40mm OD 26mm ID
176.744	44mm OD 26mm ID
176.748	48mm OD 26mm ID
176.752	52mm OD 26mm ID
176.844	44mm OD 28mm ID
176.848	48mm OD 28mm ID
176.852	52mm OD 28mm ID

Centralisers and impaction grafting

188.555
181.901
181.902

TaperFit PMMA centraliser, pack 5 Impaction grafting canal occluder size 1 Impaction grafting canal occluder size 2 Impaction grafting canal occluder size 3

Instrumentation

288.999	TaperFit instrument set
288.993	TaperFit impaction grafting instrument set
281.999	Standard impaction grafting instrument set
275.000	Cenator instrument set

Complementary products

181.903

Hardinge femoral canal occluder, box 10 174.600 279.000 Canal occluder introducer

TaperFit X-ray templates

288.911	100%
288.912	110%
288.913	115%
288.914	120%

References:

- 1. Fowler JL, Gie GA, Lee AJC, Ling RSM. Experiences with the Exeter total hip replacement since 1970. Orthop Clin North Am 1988:19; 477-489
- 2. Ramos JL, Pandit HG, Edwards S, Grover ML. Lateral approach to the hip joint; does it predispose to malalignment of the femoral component in total hip arthroplasty? British Orthopaedic Association, Annual Congress 1999, Glasgow, Free Paper Session 16.
- 3. Malchau H, Herberts P. Prognosis of total hip replacement: Revision and re-revision rate in THR: A revisionrisk study of 148,359 primary operations. Scientific Exhibition presented at the 65th Annual Meeting of the American Academy of Orthopaedic Surgeons, March 1998, New Orleans.

The Corinium Centre Cirencester, GL7 1YJ t: +44 (0)1285 659 866 f: +44 (0)1285 658 960 e: info@coringroup.com

www.coringroup.com

Corin

Printed on 9lives 80 which contains 80% total recycled fibre and is produced at a mill which holds the ISO 14001 for Environmental Management Systems. The pulp is bleached using Elemental Chlorine Free processes.

©2010 Corin P No I1078 Rev0 10/2010 ECR 10532 0088 BIOLOX delta is a registered trademark of CeramTec